Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
Tags
- cortical representation
- Python
- DMN
- 코드업
- abcd
- RSFC-based behavioral prediction
- cortical mapping
- socioeconomic status
- CodeUp
- Slice timing
- matlab
- Normalise
- 파이썬
- fMRI
- Word Embedding
- Coregistration
- neurofeedback
- Kernel regression
- SPM
- 판다스
- DCCSAE
- 광화문텀블러
- pandas
- 약수구하기
- 한정판텀블러
- 판다스기초
- hierarchical clustering analysis
- 우박수
- SPM12
- Realignment
Archives
- Today
- Total
몽발개발
A Parallel Independent Component Analysis Approach to Investigate Genomic Influence on Brain Function 본문
뇌공학/논문 정리
A Parallel Independent Component Analysis Approach to Investigate Genomic Influence on Brain Function
집사 몽이 2021. 1. 13. 15:25반응형
읽은 날 | 2021.01.13. | 학술지 | IEEE signal processing letters |
제목 | A Parallel Independent Component Analysis Approach to Investigate Genomic Influence on Brain Function | ||
저자 | J Liu, O Demirci, VD Calhoun.. | ||
한줄요약 | Parallel ICA의 소개와 이를 이용한 fMRI data/SNP data의 통합분석 (feat. Schizophrenia) | ||
초록 | Abstract—Relationships between genomic data and functional brain images are of great interest but require new analysis approaches to integrate the high-dimensional data types. This letter presents an extension of a technique called parallel independent component analysis (paraICA), which enables the joint analysis of multiple modalities including interconnections between them. We extend our earlier work by allowing for multiple interconnections and by providing important overfitting controls. Performance was assessed by simulations under different conditions, and indicated reliable results can be extracted by properly balancing overfitting and underfitting. An application to functional magnetic resonance images and single nucleotide polymorphism array produced interesting findings. |
||
키워드 | Entropy, fMRI, genetic association, independent component analysis (ICA), multimodal process, parallel ICA |
||
의의 | Imaging genetics 연구에 사용할 수 있는 parallel ICA algorithm 개발. | ||
비판점 | 더 많은 subject 수에 적용해보고 싶다. 또한, schizophrenia 말고도 다른 여러 정신질환의 조기진단에 도움이 될 것 같다. |
반응형
'뇌공학 > 논문 정리' 카테고리의 다른 글
Deep learning methods and applications in neuroimaging (0) | 2021.01.15 |
---|---|
CBAM: Convolutional Block Attention Module (0) | 2021.01.13 |
Biospecimens and the ABCD study: Rationale, methods of collection, measurement and early data (0) | 2021.01.05 |
Application of deep canonically correlated sparse autoencoder for the classification of schizophrenia (0) | 2021.01.05 |
Brain disorders? Precisely (0) | 2020.10.15 |