몽발개발

TabNet: Attentive Interpretable Tabular Learning 본문

뇌공학/논문 정리

TabNet: Attentive Interpretable Tabular Learning

집사 몽이 2020. 9. 15. 15:09
반응형
읽은 날 2020.09.15 학술지 arXiv preprint arXiv
제목 TabNet: Attentive Interpretable Tabular Learning
저자 Sercan ¨ O. Arık, Tomas Pfister
한줄요약 Tabular data를 처리하는 새로운 neural network인 TabNet의 이점.
초록 We propose a novel high-performance and interpretable canonical
deep tabular data learning architecture, TabNet. TabNet uses sequential
attention to choose which features to reason from at each
decision step, enabling interpretability and more efficient learning
as the learning capacity is used for the most salient features. We
demonstrate that TabNet outperforms other neural network and decision
tree variants on a wide range of non-performance-saturated
tabular datasets and yields interpretable feature attributions plus
insights into the global model behavior. Finally, for the first time to
our knowledge, we demonstrate self-supervised learning for tabular
data, significantly improving performance with unsupervised
representation learning when unlabeled data is abundant.
키워드 TabNet, tabular data, deep neural network, deep learning
의의 정확도 높은 tabular data learning algorithm 개발
비판점  

 

반응형